Существующие ткани, предназначенные для покрытий оболочек, пока не отвечают равнозначно всем основным требованиям, предъявляемым к таким конструкциям: трудновоспламеняемости, работоспособности при низких температурах, биостойкости, высоким гарантийным срокам эксплуатации.

В ближайшей перспективе промышленность будет выпускать ткани пленочных покрытий, сочетающие в себе перечисленные качества. Эти покрытия будут выполнены из композиционных материалов на основе высокопрочных синтетических волокон с газо-содержащим слоем из резиновой или термопластичной пленки. Одним из возможных решений может явиться применение для воздухоопорных сооружений нержавеющей стали. Например, в Канаде была сооружена оболочка эллиптической формы с размерами по осям 100 и 80 м. Оболочка была собрана из стальных заготовок толщиной 1,6 мм, что составило около 13 кг на 1 м2 покрытия. Конструкция оболочки обеспечивала шарнирность соединения швов между заготовками и их воздухонепроницаемость, а также исключала обрушение конструкции в случае потери избыточного давления под ней. Избыточное давление, создаваемое вентиляторами под оболочкой, составляло 340 Па.

Наряду с улучшением эксплуатационных качеств оболочек будет повышена технологичность их конструкций. В частности, должна быть улучшена конструкция монтажных швов, что даст возможность перевозить оболочки более легкими, т. е. более транспортабельными, пакетами; усовершенствована шарнирная конструкция опор пневмокаркасных конструкций, что позволит возводить оболочки методом самомонтажа. Будут усовершенствованы конструкции и методы сборки тентовых оболочек, в том числе и оболочек в северном исполнении.

§ 70. ОСОБЕННОСТИ ПРОИЗВОДСТВА МОНТАЖНЫХ РАБОТ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ

При производстве монтажных работ в зимних условиях наиболее уязвимым местом является стык сборных железобетонных конструкций. Дело в том, что незначительный объем бетона, укладываемого в стык, и высокий модуль его поверхности (25...100) способствуют быстрому замораживанию бетона в стыке.

При замоноличивании стыковых соединений в зимних условиях должны приниматься меры, исключающие замораживание бетона в стыке до достижения им критической прочности, значения которой зависят от вида конструкции и сроков ее ввода в эксплуатацию. Так, в вертикальных стыках наружных стен крупнопанельных зданий должна быть обеспечена прочность бетона не менее 50% проектной. При такой прочности уже можно вести монтаж здания, а также обеспечивается плотность бетона, необходимая для защиты металлических закладных частей и связей от действия влаги.

Для сборно-монолитных оболочек прочность бетона в швах к моменту замораживания должна быть не менее 70% проектной. Для стыковых соединений конструкций, загружаемых полной эксплуатационной нагрузкой до оттаивания, необходимо получить до замораживания 100%-ную прочность бетона и т. д.

Для достижения бетоном или раствором до замораживания критической или проектной прочности следует предварительно прогревать полость стыка и укладывать подогретый до температуры не менее 20°С бетон или раствор с. последующим поддержанием необходимой температуры изотермического прогрева.

Конечную прочность бетона в стыке следует назначать в 1,5...2 раза выше проектной прочности бетона стыкуемых элементов, что позволяет после 1...1,5 суток прогрева получать 50...70% проектной прочности бетона.

Для заделки стыков следует применять бетоны и растворы на портландцементе марки 500 или быстротвердеющие и экзотермичные цементы. Бетон приготовляют на чистых заполнителях с В/Ц = 0,4...0,5, а раствор — с В/Ц=0,4...0,55.

Закладные детали и выпуски арматуры в стыках сваривают при температуре наружного воздуха не ниже — 30°С.

В зависимости от типа стыкуемых конструкций применяют следующие способы заделки стыков:

  1. замораживание;
  2. введение в бетон (раствор) противоморозных добавок;
  3. тепловую обработку бетона (раствора).

Способ замораживания используют для стыков, в которых бетон не передает усилия на стыкуемые элементы. К таким стыкам, например, относятся продольные швы между панелями перекрытий жилых зданий, между настилами покрытий промышленных зданий, вертикальные стыки между блоками фундаментов и внутренних стен.

Противоморозные добавки вводят в бетон для заделки армированных стыков. В качестве такой добавки можно применять поташ (К2СО2) в кристаллическом виде, нитрит натрия (NаNO2), которые не вызывают коррозию металла. Среднесуточная температура, при которой эффективны эти добавки, составляет около — 15°С. При этом объем добавки в зависимости от температуры воздуха составляет 4...10% массы цемента, а температура смеси в момент укладки должна быть не менее +5°С.

При добавлении поташа в виде водной эмульсии температура, при которой раствор замерзает, равна — 36°С. Учитывая, что с введением поташа существенно сокращается время схватывания, бетонная смесь или раствор в момент выхода из смесительной машины должен иметь температуру не выше 0°С.

Ускорение твердения бетона в стыках может быть обеспечено и тепловой обработкой бетона электронагревательными устройствами или непосредственным прогревом бетона электрическим током. Все нагревательные устройства работают на переменном токе напряжением 36...110 В.

В качестве нагревательных устройств применяют:

  1. печи сопротивления в виде отражателя обычно параболической формы с расположенным в фокусе электронагревателем;
  2. мягкую греющую опалубку (электрокомпресс) в виде манжета из резины, брезента, пластиковых материалов с впрессованными в них электродами. Для этих же целей служит и токопроводящая графитовая ткань;
  3. термоактивную опалубку с электродами, смонтированными в специальных панелях, которые располагают в слое опилок, смачиваемых 5%-ным раствором поваренной соли. Такие опалубки удобно использовать при прогреве стыков горизонтально сопрягаемых элементов. Расход мощности для прогрева одной шпонки или стыка составляет около 5...10 кВт;
  4. электрические кассеты в виде асбестошиферных щитков с проложенной между ними нихромовой проволокой. Их обычно применяют в сочетании с инвентарной металлической опалубкой стыка. Расход мощности на прогрев одного стыка равен примерно 2 кВт;
  5. индукционный прогрев — рекомендуется для прогрева малообъемных и густо армированных стыков. Этот метод наиболее эффективен для прогрева стыков колонн железобетонного каркаса многоэтажных зданий. Требуемая мощность для прогрева одного стыка составляет около 15 кВт, а время прогрева до 8 ч. При применении метода индукционного прогрева бетона в стыковых соединениях в каждом отдельном случае необходим расчет индуктора, учитывающий насыщенность стыка арматурой. В противном случае могут произойти местный перегрев арматуры и разрушение бетона.

Электродный прогрев бетона в стыках требует меньшего (по сравнению с другими способами) расхода энергии и позволяет в более короткие сроки получить необходимую прочность бетона, что особенно важно для конструкций, требующих замоноличивания стыковых соединений в процессе монтажа. Однако для густоармированных стыков, где не исключена возможность замыканий, и для стыков с высоким модулем поверхности, где бетон может быть пересушен, электродный прогрев не рекомендуется.

Поэтому чаще всего электродный прогрев бетона используют для прогрева стыков фундаментов стаканного типа, колонн с капителями безбалочных перекрытий и в ряде случаев для прогрева вертикальных стыков в крупнопанельных зданиях.

Наличие отрицательных температур наружного воздуха накладывает определенные ограничения и на процесс герметизации стыков. Так, герметизация стыков мастиками допускается при температурах не ниже — 20°С. Полизобутиленовую мастику для лучшей адгезии с бетоном следует предварительно подогревать до 110...120°С.

В остальном процесс герметизации стыков в зимних условиях протекает так же, как и в летних.

СТРАНИЦЫ: